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The present paper focuses on the redox properties of perovskite-related oxides and presents a solution model

that connects integral thermodynamic properties that are measured calorimetrically with partial thermodynamic

quantities that are measured by equilibration methods. The model allows us to extract significant features of

the redox energetics of non-stoichiometric oxides. It is shown that the redox behavior, e.g. the composition–

partial-pressure isotherms, is independent of the stability of the non-stoichiometric oxides and as a first

approximation is directly given by the relative stability of the oxidation states involved. The stability of a given

oxidation state is related to the structure of the oxide, and the large difference in redox behavior between

hexagonal and cubic SrMnO3 2 d is rationalized. Whereas both the enthalpy and entropy of oxidation in

general depend on temperature, a number of systems can be adequately described using an ideal solution

approach. This implies that composition-independent enthalpic and entropic terms can be used as first

approximations to describe the redox energetics of non-stoichiometric oxides. In order to illustrate the

approach an overview of the redox energetics of selected La1 2 xAexMO3 2 d phases (Ae alkaline earth, M

transition metal) of interest in connection with solid oxide fuel cell and gas separation membrane applications

is given.

Introduction

The interest in perovskite-type and related oxides with variable
formal oxidation state of the metals is large. Practical uses of
these materials are in many cases related to the variable
oxidation state of the metal that is important for, for
example, catalytic activity, superconductivity, and mixed
ionic and electronic conductivity. The redox properties of
non-stoichiometric oxides depend in general on the enthalpy
and entropy of oxidation and their variation with composition
and temperature. Owing to the large number of factors
involved it is in general not straightforward to extract energetic
parameters from (stoichiometry, P, T)-data. Often the inter-
pretations of such data are based on one or more simultaneous
point defect equilibria whereas the energetic parameters con-
nected to each of the equilibria are assumed to be independent
of composition and temperature.
The thermodynamics of redox reactions in solid oxides

can be studied by several different techniques. Most often,
the composition of the oxide is determined as a function of
the partial pressure of oxygen and temperature and the
energetics of the redox reactions deduced from the variation
of the equilibrium PO2

with composition.1,2 Alternatively,
calorimetric determinations of enthalpies of oxidation can
be made.3,4 The relationship between calorimetrically deter-
mined enthalpies of oxidation and (stoichiometry, P, T)-
relationships is, however, not obvious and the fact that
energetic parameters deduced from equilibration studies are
often not in agreement with calorimetrically determined
quantities is thus not easily addressed. The present paper
focuses on the redox properties of perovskite-related oxides
and presents a solution model that connects integral thermo-
dynamic properties that are measured calorimetrically with
partial thermodynamic quantities that are measured by equili-
bration methods. The physical implications of the model are
discussed, as are enthalpic and entropic contributions to the
redox energetics.

Solution thermodynamics of
ABO3 2 d (0v d v 0.5)

Consider a simple non-stoichiometric perovskite-type oxide,
ABO3 2 d, (e.g. A ~ Ln or Ae and B ~ M) with oxygen
vacancies and valence defects on the B sub-lattice as the only
defects. We will assume that A is a cation like Sr2z or La3z,
which is not involved in the redox reactions, whereas B is a
transition metal cation present in two oxidation states, B3z and
B4z or B2z and B3z. Using the latter case, all the B atoms
are trivalent for d ~ 0 (i.e. in ABO3) and divalent for d ~ 0.5
(i.e. in ABO2.5). We disregard any effect of intrinsic disorder,
of ionic or electronic type. The removal of oxygen atoms
results in the reduction of B atoms and for many systems
this can be expressed in terms of a defect chemical reaction
according to5

2Ox
Oz4Bx

B~2V..
O z4B0

BzO2(g) (1)

The corresponding equilibrium constant is given by

K~
½V..

O �2½B0
B�4

½Ox
O�

2½Bx
B�

4
.pO2(g) (2)

and the oxygen pressure which corresponds to a certain value
of d is

log pO2(g)~ logKz4flog (1{2d)

{ log (2d)g{2 log
d

3{d

� � (3)

For thermochemical uses, an expression for the integral Gibbs
energy of formation of the compound ABO3 2 d is also needed.
Such an expression can be derived by integration of eqn. (3) but
in order to show clearly some of the main implications of
the model a more detailed analysis starting from the partition
function is preferred.
In the isobaric–isothermal (NPT) ensemble the partition
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function for a closed system is given by6

Z~
X
c

X
s

exp ({
Hc,s

kT
)~

X
c

exp {
Gc

kT

� �
(4)

The summation over the enthalpy, Hc,s, is running over all the
vibrational states, s, for all the different atomic configurations,
c, of the system. The summation over the enthalpy for a
particular atomic configuration is related to the Gibbs energy
of that particular configuration, Gc, and the total partition
function, Z, is given as the summation of the Gibbs energy of
all the different atomic configurations of the system.
The Gibbs energy of formation of a compound with a given

composition can now be derived by summation over all
configurations that have a certain Gibbs energy of formation,
DfGc’, and an associated degeneracy, gc’.

DfG~{kT lnZ~{kT ln
X
c0

gc0 exp {
DfGc0

kT

� �
(5)

The configurational entropy term, given by the degeneracy gc’ is
included in DfG but not in DfGc’.
Let us assume the existence of two compounds with different

formal oxidation states for the B atom, ABO3 and ABO2.5. The
two compounds have the same (perovskite-type) structure, and
the non-stoichiometric phase ABO3 2 d is seen as a solution of
these two ‘limiting compounds’. Often only one of the limiting
compounds is physically realizable. If we use the LaMnO3 2 d

system where dmax at 1473 K is near 0.053 7 as an example:
LaMnO3 can be made in the laboratory, but LaMnO2.50

cannot. In other cases a complete solid solution exists and
SrFeO3 2 d serves as an example where wide non-stoichiometry
is observed at high temperatures.8

If we assume that the non-stoichiometric ABO3 2 d can be
described as an ideal solution of the two limiting compounds
ABO3 and ABO2.5, all configurations with a certain composi-
tion have the same Gibbs energy of formation since there are
no defect–defect interactions. The Gibbs energy of formation
of a configuration, DfGc’, is, for a certain composition, given as

DfGc0 (ABO3{d)~(1{2d)DfG
o(ABO3)

z2dDfG
o(ABO2:5)

(6)

The pure elements at 1 bar and at a particular temperature are
chosen as standard state. Since all configurations with a given
composition have the same Gibbs energy of formation, the
total Gibbs energy of formation of a material with a specific
composition is given by taking the number of configurations
for that composition into consideration. In the ideal solution
approach a random distribution of the different species on the
different sub-lattices is assumed. Let us assume that oxygen
atoms and oxygen vacancies on the oxygen sub-lattice and B2z

and B3z on the B sub-lattice are randomly distributed. In this
case, the degeneracy, gc’, is

gc0~
(3N)!

NVO
!(3N{NVO

)!
. N!

NB2z !(N{NB2z )!
(7)

whereN is the number of B atoms,NVO
is the number of oxygen

vacancies and NB2z is the number of B2z in ABO3 2 d.
By substitution of eqns. (6) and (7) in eqn. (5) an expression

for the total Gibbs energy of formation of the oxide in the ideal
solution approximation is obtained.

DfG(ABO3{d)~(1{2d)DfG
o(ABO3)

z2dDfG
o(ABO2:5)

zRT (1{2d) ln (1{2d)z2d ln (2d)
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3
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d

3
)
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Here, DfG
o(ABO2.5) is the standard Gibbs energy of forma-

tion of each of all possible configurations of perovskite-type
ABO2.5. The fact that we have a number of configurations with
this Gibbs energy of formation gives rise to an additional
contribution of configurational origin given in the square
brackets. For d ~ 0.5 this term represents (in the present ideal
solution approximation) the entropy connected with disorder-
ing of ordered ABO2.5 giving a completely random distribu-
tion of oxygen atoms and oxygen vacancies on the oxygen
sub-lattice. Hence, the total Gibbs energy of formation of an
oxide with a certain composition is given as a sum of a non-
configurational and a configurational term.
The chemical potential of oxygen can now be derived and the

related quantity log pO2
expressed as a function of d

log pO2(g)~(
1

RT ln 10
)f4DfG

o(ABO3)

{4DfG
o(ABO2:5)g

z4flog (1{2d){ log (2d)g

{2 log (
d

3{d
)

(9)

The first term on the right-hand side is in this ideal solution
approach given by the standard Gibbs energy of oxidation,

4DfG
o(ABO3){4DfG

o(ABO2:5):DoxG
o

~DoxH
o{T .DoxS

o
(10)

which corresponds to the reaction

4ABO2:5(perovskite)zO2(g)?4ABO3(perovskite) (11)

In the ideal solid solution model used the enthalpy and entropy
of oxidation are independent of composition. Non-ideal terms
can easily be incorporated into the model. This will enable us
to take compositional effects on the Gibbs energy of oxidation
into consideration, and the Gibbs energy of oxidation will no
longer be directly related to eqn. (11).
Both the reduced and the oxidized compounds in eqn. (11)

are of the same structure, e.g. of the perovskite-type, and
the corresponding enthalpy of formation of ABO2.5 is the
enthalpy of formation of a disordered phase with many
possible configurations which all have the same enthalpy of
formation (the ideal solution approach). With regard to
the redox entropy it should be noted that the last two terms
in eqn. (9) represent the partial configurational entropy of
oxygen. Hence, the entropic contribution to the Gibbs energy
of the redox reaction eqn. (11) should not include the structural
configurational contribution since this term is included
explicitly in the configurational part of the equation. Thus,
when comparing calorimetric entropies with entropies deduced
from equilibration studies, the configurational entropy should
be subtracted from the calorimetric entropy.
In the preceding treatment we have assumed one defect

reaction only [eqn. (1)] and the electronic defects are assumed
to be localized. Intrinsic defects in the two compounds ABO2.5

and ABO3 are neglected. Eqn. (9), derived from the partition
function, and eqn. (3), obtained using the Kröger–Vink
approach, are identical. This implies that the right-hand side
of eqn. (2) is indirectly an expression for the partial confi-
gurational entropy, whereas the left-hand side, the equilibrium
constant, is given by

logK~
1

RT ln 10

� �
. 4DfG

o(ABO3){4DfG
o(ABO2:5)

� �
(12)

An alternative approach to this type of solution modeling is
based on virtual potentials and structural building units; see,
for example, Kröger et al.9 and Schottky.10
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Redox energetics of perovskite-related oxides

From enthalpies of oxidation to redox properties and vice versa

The ideal solution model allows us to describe the redox
properties of perovskite-type oxides provided that the enthalpy
of oxidation [eqns. (10) and (11)] is known. The correspond-
ing entropy has a smaller influence (varies less) on the redox
properties and is assumed to be 2130 J K21 molO2

21. Figs. 1
and 2 compare experimental (composition, PO2

, T)-relation-
ships and model calculations using composition-independent
enthalpies of oxidation determined calorimetrically. Composi-
tion–partial-pressure isotherms for La1 2 xCaxCrO3 2 d

11,12

and La1 2 xSrxCrO3 2 d
13 are shown in Fig. 1 whereas the

variation of the stoichiometry of cubic SrMnO3 2 d
14,15 and

of CaMnO3 2 d
4 in air with temperature is shown in Fig. 2.

The overall agreement is good and the calorimetrically deter-
mined enthalpies of oxidation and the partial thermodynamic
quantities measured by equilibration methods are consistent.
Some details are not reproduced by the calculations and the
need of more complex models than the presently used ideal
solution model is indicated. A short discussion is given below.
Eqns. (8) and (9) suggest that the redox behavior of a

material is given by the relative stability of the different
oxidation states involved. In this respect the crystal structure of
the material is important; both the reduced and the oxidized
compounds in eqns. (8) and (9) are of the same structure. The
significance of this argument is illustrated through the redox
properties of hexagonal and cubic SrMnO3 2 d.

4 The oxygen
stoichiometry of these two phases in air is given as a function
of temperature in Fig. 3. The large difference in temperature
for the calculated initial reduction in air, ca. 700 K for the cubic
phase versus ca. 1300 K for hexagonal SrMnO3 2 d, may at
first sight seem strange since the enthalpy difference between
the cubic and hexagonal modification of SrMnO3 is only about
6 kJ mol21.16 However, the temperature of initial reduction is
given by the difference in Gibbs energy between the oxidized
and reduced limiting compounds of the solid solution. And
while cubic SrMnO2.5 is relatively stable (can be prepared in
the laboratory),17 hexagonal SrMnO2.5 is unstable. The Gibbs
energy difference between the oxidized and reduced com-
pounds is, hence, much larger for the hexagonal case than for
the cubic case. The reason for this can be understood by taking
the structure of hexagonal SrMnO3 into consideration.18

While the Mn–O6 octahedra share corners in the usual cubic
perovskite-type structure, they share faces in the hexagonal
structure (see Fig. 4). Reduction of the cubic structure gives

Fig. 1 (32 d) in La1 2 xAexCrO3 2 d as a function of T and PO2
.

References to the experimental points are given in the figure. The lines
are calculated using the ideal solution model with calorimetrically
determined average enthalpies of oxidation and an estimated entropy
of oxidation. For further details see Stølen et al.12

Fig. 2 (32 d) for cubic AeMnO3 2 d in air as a function of T.
References to the experimental points are given in the figure. The lines
are calculated using the ideal solution model with calorimetrically
determined average enthalpies of oxidation and an estimated entropy
of oxidation. DoxH(SrMnO3 2 d) ~2293¡ 10 kJ molO2

21; DoxH-
(CaMnO3 2 d) ~2356¡ 7 kJ molO2

21. The three lines represent in
each case the best value (the thick line) and the estimated uncertainty
(the thin lines).

Fig. 3 (32 d) for cubic and hexagonal SrMnO3 2 d in air as a func-
tion of T. References to the experimental points are given in the figure.
The lines for the cubic phase are calculated using the ideal solution
model with the calorimetrically determined average enthalpy of oxida-
tion and an estimated entropy of oxidation. DoxH(SrMnO3 2 d, cub)~
2293¡ 10 kJ molO2

21; for the hexagonal case DoxH(SrMnO3 2 d,
hex)~ 2590¡ 20 kJ molO2

21 and DoxS~ 2230 J K21 molO2
21 is

used. The three lines represent in each case the best value (the thick
line) and the estimated uncertainty (the thin lines).

Fig. 4 Polyhedron description of the crystal structure of hexagonal
SrMnO3.

18 Large symbols represent manganese atoms, small symbols
oxygen atoms. Mn–O6 octahedra are given in grey.
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rise to square pyramidal coordinated manganese whereas
reduction of the hexagonal structure in the end probably would
lead to face-shared octahedra separated by planes with high
oxygen-vacancy concentration. The latter structure must be
expected to be energetically unfavorable. In conclusion, the
redox energetics of a phase depend strongly upon the crystal
structure, a fact that should be taken into account when
looking for trends in redox properties.
The present ideal solution model with DoxH independent

of oxygen stoichiometry may seem like an oversimplification
for complex oxides like the perovskite-related ones. However,
the simplicity of the model allows us to deduce trends in the
redox energetics. Enthalpies of oxidation can be deduced
from stoichiometry–partial-pressure curves by using an esti-
mated entropy of oxidation, in our case chosen to be
2130 J K21 molO2

21. Here, it is important to note that the
composition–partial-pressure range close to the fully oxidized
compound preferably is used for evaluation of the enthalpy of
oxidation. In this compositional region, effects of defect–defect
interactions are less important. The obtained enthalpy of
oxidation11–13,19–27 of M(III) to M(IV) for La1 2 xAexMO3 2 d is
plotted as function of x in Fig. 5. Calorimetrically determined
enthalpies are also included and it is reassuring to see that the
enthalpy of oxidation of La1 2 xAexMO3 2 d deduced from
equilibrium studies extrapolates to the calorimetrically deter-
mined enthalpies of oxidation of SrMnO3 2 d,

4 SrFeO3 2 d
22

and SrCoO3 2 d.
26

Hence, DoxH varies to a first approximation linearly with
composition x for La1 2 xAexMO3 2 d. A numerical descrip-
tion is given in Table 1. The agreement between experimental
composition–partial-pressure isotherms and calculated curves
using the tabulated enthalpy equations, illustrated in Fig. 6, is
largely good. The deviation observed for La0.7Sr0.3MnO3 2 d

for large d is due to decomposition of the oxide.24 This does not

affect the evaluation of the energetics of eqn. (9) that dominate
when d is small.
The present evaluation suggests that the enthalpy of

oxidation is a linear function of x in La1 2 xAexMO3 2 d and
furthermore is independent of d. Earlier calorimetric studies
of the enthalpy of oxidation of K2NiF4-type La2 2 xSrx-
CuO4 2 d

28 and La2 2 xSrxCoO4 2 d
29 suggest that the enthalpy

of oxidation is independent of x whereas a study of BaNiO2 z d

suggests an independence of d.30 Furthermore, the entropy
of oxidation of SrFeO3 2 d has recently been shown to be
independent of d.31 Enthalpies and entropies of oxidation that
are dependent of the oxygen stoichiometry are on the other
hand suggested from equilibration studies of La2 2 xSrx-
CuO3 2 d

32 and La0.8Sr0.2CoO3 2 d.
2 In conclusion, the ideal

solution behavior seems to be a reasonable approach although
deviations from this ideal behavior must be expected in some
cases. This topic is discussed to some extent below.

Entropic contributions to the redox energetics

The enthalpy of oxidation has larger influence on the redox
properties than the corresponding entropy of oxidation. Still,
values used for the entropy of a reaction that consumes one
gas molecule, typically 2130 J K21 mol21, should be con-
sidered only as rough estimates. The entropy of oxidation
values33 of selected transition metal monoxides to sesqui-oxides
according to

MO(s)z1=4O2(g)~1=2M2O3(g) (13)

and of selected sesqui-oxides to dioxides are given as a func-
tion of temperature in Fig. 7. Two main features are obvious.
The entropy of oxidation varies greatly from case to case and
significantly with temperature. The entropy difference between
product and reactant is obviously of great importance. Let us
use SrFeO3 2 d as an example. The entropy of oxidation, given
by the difference in entropy between SrFeO2.5 and SrFeO3, can
be deconvoluted into approximate vibrational, electronic and
magnetic contributions. If we use T ~ 1000 K as an example,
SrFeO2.5 is structurally ordered but magnetically disordered.
Using an estimated magnetic entropy based on the spin-only
approximation were DmagnS is given by R ln(2Sz 1), the total
harmonicz anharmonic vibrational entropy can be deduced31

(see Fig. 8). The electronic contribution is negligibly small
for semi-conducting SrFeO2.5. SrFeO3 is, on the other hand,
reported to have metallic conductivity7 and a significant
electronic heat capacity coefficient must be expected. Let us
assume an electronic heat capacity coefficient of the order
observed for metals, 5 mJ K21 mol21. Using the spin-only
magnetic entropy the total vibrational entropy is obtained.

Fig. 5 Enthalpy of oxidation of La1 2 xAexMO3 2 d as a function of x.
Open symbols represent values deduced using equilibrium data from
literature. Closed symbols are calorimetrically determined values.
La1 2 xSrxCoO3 2 d: #, Mizusaki et al.27 and Lankhorst et al.;25 $,
Evenrud.26 La1 2 xSrxFeO3 2 d: %, Mizusaki et al.19,20 and Holt et
al.;21 &, Haavik et al.22 La1 2 xSrxMnO3 2 d: ', Kuo et al.23 and
Mizusaki et al.;24 +, Rørmark et al.4 La1 2 xCaxMnO3 2 d: r,
Rørmark et al.4 La1 2 xCaxCrO3 2 d: (, Yashiro et al.;11 ,, Stølen
et al.12

Table 1 Enthalpy of oxidation of M(III) to M(IV) in kJ molO2
21

Tm
Binary
oxide MO/M2O3 La1 2 xSrxMO3 2 d La1 2 xCaxMO3 2 d

Cr 2112 2577z 300x
Mn 2160 2499z 210x 2499z 143x
Fe 110 2231z 82x
Co 180 2261z 261x

Fig. 6 (32 d) in La1 2 xAexMO3 2 d at 1273 K as a function of PO2
.

Experimental data: %, Yashiro et al.;13 ', Mizusaki et al.;24 (,
Mizusaki et al.;19 #, Holt et al.21 The lines are calculated values using
enthalpies of oxidation deduced from Table 1.
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Although this deconvolution scheme is uncertain a main
conclusion is evident; the entropic contribution to the redox
energetics is to a large extent given by the vibrational entropies
of the limiting compounds, in this case SrFeO2.5 and SrFeO3.
Fig. 7 shows that the vibrational properties are important also
for the entropy of oxidation of binary transition metal oxides.
The main reason for the large spread in DoxS is related to large
variations in the vibrational characteristics of the different
binary oxides. It follows that the entropic contribution to the
redox energetics of ternary non-stoichiometric oxides also must
be expected to vary considerably from case to case.
While the absolute values of the entropy33 of the binary

iron oxides FeO and Fe2O3 are approximately equal per mole
of iron, the entropy of SrFeO3 2 d shows a much stronger
dependence on composition.33 A main difference is that
whereas, for instance, FeO and Fe2O3 take different structures,
the changes in structure on going from SrFeO2.5 to SrFeO3 are
much smaller. Hence, to a first approximation the entropy of
SrFeO3 2 d depends on the total number of atoms present in

the compound. New atoms that are incorporated into the
structure do not alter the vibrational characteristics of the
phase significantly but contribute with six degrees of freedom
per atom, hence by a 3k contribution to the heat capacity at
high temperatures.
On the other hand, while the entropy values of FeO and

Fe2O3 are almost equal per mole of iron, a large difference is
observed between the entropy values of TiO and Ti2O3. The
entropy of selected binary transition metal oxides at 1000 K is
given in Fig. 9. The vibrational characteristics of a compound
are in general given by the structure/electron band structure,
and the difference in behavior between the FeO/Fe2O3 and
TiO/Ti2O3 pairs seems to relate to differences in electronic
band structure that affect the cohesive properties of the
compounds and, hence, the vibrational characteristics. Fig. 10
shows the average Tm–O distances34 for the first coordination
sphere of monoxides and sesqui-oxides of the first series of the
transition elements. Both the transition metal–oxygen distance
and the entropy of the monoxides show the same general trend;
both properties increase from Ti to Mn and Fe and then
decrease. For the sesqui-oxides neither the Tm–O distances
nor the entropy varies much with Tm. The small difference in
entropy between FeO and 1/2Fe2O3 relative to the difference
between TiO and 1/2Ti2O3, hence, seem to be related to bond
strength. The average Fe–O distance is about 7% larger for
FeO compared with Fe2O3 whereas it is 3.5% larger for TiO
relative to Ti2O3. The long Fe–O distances in FeO indicate
a low Debye temperature and, hence, high entropy. This is the
primary reason for the different behavior of the iron versus the
titanium oxides. This sort of indirect electronic contribution to
the redox entropy must be taken into account to understand
fully the entropic contribution to the redox energetics. Large
differences in the entropic contribution to the redox energetics
may be expected from one system to another.

Fig. 7 Entropy of oxidation per mole of O2 as a function of
temperature. The value for SrFeO3 2 d is compared with values for
pairs of binary transition metal oxides (the thermochemical data are
taken from Barin33). Example: Ti3z–Ti4z represent the reaction
2Ti2O3 z O2(g)~ 4TiO2. The entropy of oxidation of brownmillerite-
type SrFeO2.5 ($) and of perovskite-type SrFeO2.5 (#) to perovskite-
type SrFeO2.833 are also given.31

Fig. 8 Deconvolution of the non-configurational entropy of SrFeO2.5

and of SrFeO3 at 1000 K into contributions of vibrational, magnetic
and electronic origin. See text for further explanation.

Fig. 9 Standard entropy of first row transition metal monoxides and
sesqui-oxides at 1000 K per mol M.33

Fig. 10 Average shortest metal–oxygen distance in first row transition
metal monoxides and sesqui-oxides.34
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Alternative models and correlations

The slope of the observed non-stoichiometry of CaMnO3 2 d in
air versus temperature4 is steeper than predicted by the model
(see Fig. 2) and the deviations are even more pronounced
for hexagonal SrMnO3 2 d

4,14,15 (Fig. 3). There may be several
reasons for this behavior and additional features must be
included in the model.
In cases where the enthalpy of oxidation is known from

calorimetry (as is the case for CaMnO3 2 d
4), the entropy of

oxidation may be used as a parameter that can be adjusted
within reason to fit the observed equilibrium data. Further-
more, the heat capacity of reaction (11) and, hence, the varia-
tion of the enthalpy and entropy of oxidation with temperature
can be taken into account. The effect of these adjustments
is, however, not large and does not give a significantly increased
agreement between experimental points and model calcula-
tions in the present cases.
Two other reasons for the deviations are easily suggested.

In the first we let the enthalpy of oxidation, DoxH
o, vary to

some degree with composition as is expected and suggested
by others.2 In the other we suggest alternative models for the
configurational entropy. The variation of DoxH with composi-
tion may be taken into account by including a defect–defect
interaction term, V. We prefer to use a defect–defect interac-
tion term on the oxygen sub-lattice and suggest this term to be
proportional to the probability of finding two oxygen vacancies
next to each other. The Gibbs energy of ABO3 2 d is in this
approach given as35

DfG(ABO3{d)~(1{2d)DfG
o(ABO3)

z2dDfG
o
H(ABO2:5)

z
d2

6
VzRT (1{2d) ln (1{2d)

�

z2d ln (2d)zd ln (
d

3
)z(3{d) ln (1{

d

3
)

�
(14)

DfGH
o(ABO2.5) here refers to Henryan ABO2.5 obtained by

extrapolation of the ideal Henryan behavior of ABO3 2 d for d
near zero to d~ 0.5. The interaction term takes the devia-
tion from the Henryan behavior at high defect concentrations
into consideration. The equilibrium partial pressure of oxygen
corresponding to a particular d is now given as

log pO2(g)~(
1

RT ln 10
) 4DfG

o(ABO3)

�

{4DfG
o
H(ABO2:5){

2d

3
.V

�

z4( log (1{2d){ log (2d))

{2 log (
d

3{d
)

(15)

The first term on the right-hand side is in this approach the
non-configurational Gibbs energy of oxidation35

4DfG
o(ABO3){4DfG

o
H(ABO2:5){

2d

3
.V

:DoxG(d)~DoxH(d){T .DoxS(d)

(16)

If V is assumed to be temperature-independent, the model
corresponds to a ‘regular solution’ model and the excess
contribution is purely enthalpic. The enthalpy of oxidation is
in this approach not directly related to a reaction of the form
as in reaction (11) but a function of d in ABO3 2 d.
The stoichiometry of CaMnO3 2 d in air is given as a

function of temperature in Fig. 11.16 The solid curve calculated
using the calorimetrically determined enthalpy of oxidation4

(2356 kJ mol21) and DoxS~ 2130 J K21 mol21 shows a

significantly different behavior to that of the experimental
data. Much better agreement is obtained by using the regular
solution model with the constriction that the average enthalpy
of oxidation should be equal to the calorimetrically deter-
mined average one. The variation of the enthalpy of oxidation
with composition for the regular solution approach is in
Fig. 12 compared with the average enthalpies of oxidation
obtained by high-temperature calorimetry. Experimental
values for two different compositional regions, 0.47v dv 0.0
and 0.23 v d v 0.0, are shown. A free fit using the regular
solution model gives better agreement with the experimental
stoichiometry–temperature data (Fig. 11) but suggests that the
oxidation becomes more exothermic when d in CaMnO3 2 d

decreases (see Fig. 12). This behavior is not in agreement with
the calorimetric values that may be taken to suggest that the
oxidation becomes less exothermic when the non-stoichiometry
decreases.
With regard to models based on alternative descriptions of

the configurational entropy, the steepness of the experimental
(32 d) versus T curve (Fig. 11) is consistent with a smaller
configurational entropy relative to that of eqns. (8) and (14).

Fig. 11 (32 d) for CaMnO3 2 d in air as a function of T. #, Rørmark
et al.16 Solid line, ideal solution model with random distribution of
oxygen atoms and oxygen vacancies on the oxygen sub-lattice and
Mn3z and Mn4z at the manganese sub-lattice. Dotted line,
‘delocalised’ electron model with random distribution of oxygen
atoms and oxygen vacancies on the oxygen sub-lattice – no
contribution from the electrons on the B sub-lattice. These electrons
are either delocalised or strongly coupled to the vacancies. In both these
cases DoxH(CaMnO3 2 d) ~2356 kJ molO2

21. Dashed line, regular
solution model. The average enthalpy of oxidation is constricted to be
equal to that determined by calorimetry, 2356 kJ molO2

21.

Fig. 12 Comparison of the compositional dependence of the enthalpy
of oxidation resulting from a free fit to the experimental non-
stoichiometry data16 using the regular solution model, and experi-
mental determinations. The two calorimetric data points represent
average enthalpies of oxidation determined for a compositional range
as indicated by the bars on the x-axis.4
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This is either due to clustering of some kind or is due to a
delocalized character of the electrons. In eqns. (8) and (9)
configurational terms that correspond to complete disorder
both on the O and B sub-lattices are included; i.e. a random
mixture of oxygen vacancies and oxygen atoms and of the
transition metal atom in two different oxidation states is
assumed for the O and B sub-lattices, respectively. Con-
figurationally averaged lattice energy simulations indicate
a significant order in terms of the presence of transition
metal octahedra, square pyramids and tetrahedra in non-
stoichiometric perovskites and suggest that the disordered
structures should be described in terms of these structural
entities.36 Hence, the structural entities often observed in low
temperature superstructures are preserved even at high
temperatures.36 This will clearly reduce the configurational
entropy but mathematical expressions taking care of such
reduced disorder correctly are not available. Also the
assumption of localized electrons that result in transition
metal atoms present in two different well-defined oxidations
states is questionable. Alternative models can be constructed.
One simple possibility is obtained by assuming that the
electrons are completely delocalized (with no electronic
entropy). Alternatively, the electrons can be assumed to be
strongly coupled to the oxygen vacancies. Both these models
give the same configurational entropy and allow a reasonable
description of the observed non-stoichiometry data when using
the calorimetric average enthalpy of oxidation (see Fig. 11).
Since the non-stoichiometry is known for a rather limited

temperature range only, the data do not allow us to
discriminate between the different models that give approxi-
mately the same agreement with experiments. In all the
modeling of CaMnO3 2 d the calorimetric value for the
enthalpy of oxidation has been used. The use of a free-fit
approach to the experimental data gives significantly different
enthalpies of oxidation. Hence, directly measured enthalpies of
oxidation give highly valuable constrictions in the modeling of
non-stoichiometry data. Calorimetrically determined partial
enthalpies of oxidation would be even more valuable and
should be a primary goal for further studies.

Summary

A thermodynamic model that describes the redox energetics of
non-stoichiometric perovskite-related oxides has been pre-
sented, in which the redox properties are rationalized in terms
of the relative stability of the oxidation states involved. A
number of systems considered can be adequately described with
an enthalpy of oxidation that is independent of oxygen
stoichiometry. The stability of a given oxidation state is
related to the structure of the oxide, and the large difference in
redox behavior between hexagonal and cubic SrMnO3 2 d has
been discussed. Enthalpies of oxidation obtained directly by
calorimetry and indirectly from equilibrium data are consis-
tent, and the combined data show that the enthalpy of
oxidation of selected La1 2 xAexMO3 2 d phases varies linearly
with x. While the entropy of oxidation is a less important
contribution to the Gibbs energy of the reactions considered, it
varies considerably from one system to another. The variations
are largely related to the vibrational characteristics of the
phases. Further studies are needed to understand these
variations. More complex models that may be applicable in
cases where the simpler model fails are discussed. Discrimina-
tion between the different models may constitute a problem in
cases were equilibrium data are available for a limited
compositional region only. Calorimetrically determined enthal-
pies of oxidation will in these cases give highly valuable
constrictions in the modeling of the non-stoichiometry data.
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